Printing the model summary in Keras is a straightforward way to get a quick overview of your model’s architecture, including layer types, output shapes, and the number of trainable parameters. Here’s how to do it:
# Import necessary libraries import keras from keras.models import Sequential from keras.layers import Dense # Create a simple Keras model (for demonstration) model = Sequential() model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) # Print the model summary model.summary()
Output:
Model: "sequential_7"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_16 (Dense) (None, 64) 6464
dense_17 (Dense) (None, 10) 650
=================================================================
Total params: 7,114
Trainable params: 7,114
Non-trainable params: 0
_________________________________________________________________
In the code above, we create a basic Keras model and then use the summary()
method to print the model’s architecture summary.